

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO PRÓ-REITORIA DE ENSINO - Proen

Av. José de Sá Maniçoba, s/nº. Centro - Caixa Postal 252 – 56304-205 - Petrolina-PE Telefone: (87) 21016758. E-mail: proen@univasf.edu.br

UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO PROGRAMA DE DISCIPLINA

NOME				COLEGIADO	CÓDIGO		SEMESTRE
FÍSICA MODERNA				CCNAT / SRN	CIEN	10072	2018.1
CARGA HORÁRIA	TEÓR: 60	PRÁT:	HORÁRIOS	OS: 2ª(Segunda) e 3ª (Terça) Tarde			
CURSOS ATENDIDOS					SUB-TURMAS		
LICENCIATURA EM CIÊNCIAS DA NATUREZA							
PROFESSOR (ES) RESPONSÁVEL (EIS)				TITULAÇÃO			
FRANCISCO DA SILVA MATIAS					М	ESTRE	

EMENTA

Princípio da Relatividade de Galileu; Transformações de Galileu; Experimento de Michelson-Morley e a busca pelo referencial do éter; Teoria da Relatividade Restrita; Planck, o problema da radiação de corpo negro e a quantização da energia; O efeito fotoelétrico; Efeito Compton; Modelos atômicos; Postulado de de Broglie; Princípio da incerteza de Heisenberg; Dualidade onda-partícula e princípio da complementariedade; Física Nuclear; Estrutura da matéria;

OBJETIVOS

Relacionar os avanços da Física Moderna e Contemporânea com o contexto histórico Apresentar os conceitos da relatividade e suas implicações no cotidiano Destacar o novo olhar que a Física Quântica lançou sobra a Natureza Realizar a leitura de artigos sobre o tema

METODOLOGIA (recursos, materiais e procedimentos)

- Quadro branco, marcador, Datashow.
- Aulas expositivas, dialogadas, com apelo à intuição do estudante e discussão detalhada de exemplos e aplicações. Será incentivado o trabalho extraclasse com listas de exercícios e leitura de material complementando as discussões em aula.

FORMAS DE AVALIAÇÃO

Serão feitas 3 avaliações no semestre.

$$\underline{A1 + A2 + A3}$$

2

CONTEÚDOS DIDÁTICOS

ENCONTROS	TEMAS ABORDADOS/ ATIVIDADES DESENVOLVIDAS	PROFESSOR	CARGA/HORARIA		
			TEÓR	PRÁT.	

21/05	Apresentação do plano de unidade didática e do programa da disciplina: Plano de unidade didática e programa da disciplina	-	2
22/05	A invariância das Leis da Física	-	2
28/05	Experimento de Michelson-Morley; Os Postulados da Relatividade Restrita;.	-	2
29/05	Registro de eventos; Relatividade da simultaneidade.	-	2
04/06	Relatividade dos Intervalos de Tempo	-	2
05/06	Relatividade das distâncias e deslocamentos	-	2
11/06	Transformações de Galileo vs Transformações de Lorentz	-	2
12/06	Relatividade das velocidades	-	2
18/06	O efeito Doppler para a Luz: Desvio para o vermelho e desvio para o azul.	-	2
19/06	Momento e Energia na Relatividade; Mecânica Newtoniana e Relatividade.	-	2
26/06	1ª Avaliação	-	2
02/07	Evolução das teorias sobre a natureza da luz; Interação com a matéria: emissão e absorção da luz.	-	2
03/07	O efeito fotoelétrico; Fótons: a natureza corpuscular da luz	-	2
09/07	Elétrons e ondas de matéria; O postulado de de Broglie; A dualidade onda- partícula.	-	2
10/07	Espectros atômicos e níveis de energia	-	2
16/07	Modelos atômicos: Átomo de Bohr	-	2
17/07	O Princípio da indeterminação de Heisenberg	-	2
23/07	A Equação de Schroedinger	-	2
24/07	O spin do elétron; Princípio da exclusão de Pauli; Construção da tabela periódica.	-	2
30/07	Momento magnético; O experimento de Stern-Gerlach;	-	2
31/07	Efeito Zeeman; Tunelamento quântico; Efeito Compton.	-	2
06/08	2ª Avaliação	-	2
07/08	Física Nuclear; Núcleos atômicos; Decaimento radioativo; dose de radiação.	-	2
13/08	Decaimento alfa, beta; Datação radioativa Aquecimento do núcleo da Terra.	-	2
14/08	Fissão do Urânio; Reatores nucleares.	-	2
20/08	Fusão termonuclear; Geração de energia no Sol e estrelas.	-	2
21/08	Sólidos; Propriedades e estruturas dos sólidos.	-	2
27/08	Níveis de energia em um sólido cristalino; Cristais; Espalhamento de raios- X.	-	2

28/08	Materiais isolantes; Metais condutores; Materiais semicondutores; Diodos; Diodo emissor de luz (LED); Lasers; O Transistor.	-	2
03/09	3ª Avaliação	-	2
10/09	Avaliação Final	-	2

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. HALLIDAY, David; RESNICK, Robert; WALKER, Jearl. Fundamentos de física. 9^a ed. Rio de Janeiro: LTC, 2012. v.4
- 2. HEWIT, Paul G. Física Conceitual. 11ª ed. Porto Alegre: Bookman, 2011.
- 3. SERWAY, Raymond A.; JEWETT, John W. Princípios de Física Vol. 4: Ótica e Física Moderna. São Paulo: Cengage Learning, 2012.
- 4. OLIVEIRA, Ivan S. Física moderna: para iniciados, interessados e aficionados. 2ª ed. São Paulo: Livraria da Física, 2009 BIBLIOGRAFIA COMPLEMENTAR:

BIBLIOGRAFIA COMPLEMENTAR:

- 5. TIPLER, Paul Allen; MOSCA, Gene. Física para cientistas e engenheiros. Vol. 3. 6^a ed. reimp. Rio de Janeiro, RJ: LTC, 2011.
- 6. EISBERG, Robert Martin. Física quântica: átomos, moléculas, sólidos, núcleos e partículas. 928 p. Rio de Janeiro: Campus, 1979.
- 7. NUSSEINZVEIG, M. Curso de Física Básica Vol. 4. 4ª edição. São Paulo: Editora Bluncher: 2008. 8. FEYMANN, R. P. Coleção Lições de Física. Porto Alegre: Bookman, 2008.

Bookman, 2000.					
// DATA	ASSINATURA DO PROFESSOR	HOMOLOGADO NO COLEGIADO	COORD. DO COLEGIADO		