

30 Horas

UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO PLANO DE ATIVIDADES REMOTAS

NOME DO COMPONENTE				COLEGIADO	CÓDIGO	SEMESTRE
Física Moderna				CCINAT		Suplementar 2020.3
CARGA HORÁRIA TOTAL	SINCRONA	ASSINCRONA	HORÁRIO:			
			1			

CURSOS ATENDIDOS	SUB-TURMAS
LICENCIATURA EM CIÊNCIAS DA NATUREZA	TODAS
PROFESSOR (ES) RESPONSÁVEL (EIS)	TITULAÇÃO
André Luiz Freire da Silva	Mestre

40 horas

EMENTA

Princípio da Relatividade de Galileu; Transformações de Galileu; Experimento de Michelson-Morley e a busca pelo referencial do éter; Teoria da Relatividade Restrita; Planck, o problema da radiação de corpo negro e a quantização da energia; O efeito fotoelétrico; Efeito Compton; Modelos atômicos; Postulado de de Broglie; Princípio da incerteza de Heisenberg; Dualidade onda-partícula e princípio da complementariedade; Física Nuclear; Estrutura da matéria;

OBJETIVOS

Relacionar os avanços da Física Moderna e Contemporânea com o contexto histórico Apresentar os conceitos da relatividade e suas implicações no cotidiano Destacar o novo olhar que a Física Quântica lançou sobra a Natureza Realizar a leitura de artigos sobre o tema

METODOLOGIA

- Será realizado através do Google Classroom, Google Meet

20 horas

- serão gravadas aulas e postadas no grupo do whatsapp ou telegram
- as dúvidas poderão ser tiradas por meio dos aplicativos(whatsapp ou telegram)
- o material de estudo será encaminhado para o e-mail do aluno, grupo de whatsapp

FORMAS DE AVALIAÇÃO

- Será realizada lista de exercícios para melhor fixação das atividades
- Será realizada 3 avaliações

CONTEÚDOS DIDÁTICOS					
Número	Cronograma de atividades				
1	Apresentação do plano de unidade didática e do programa da disciplina:				
	Plano de unidade didática e programa da disciplina				
2	A invariância das Leis da Física				
3	Experimento de Michelson-Morley				
4	Os Postulados da Relatividade Restrita				
5	Registro de eventos; Relatividade da simultaneidade				
6	Relatividade dos Intervalos de Tempo				
7	Relatividade das distâncias e deslocamentos				
8	Transformações de Galileo				
9	Transformações de Lorentz				
10	Relatividade das velocidades				
11	O efeito Doppler para a Luz: Desvio para o vermelho e desvio para o azul				
12	Momento e Energia na Relatividade; Mecânica Newtoniana e Relatividade				

13	1ª Avaliação			
14	Evolução das teorias sobre a natureza da luz; Interação com a matéria: emissão e absorção da luz O			
	efeito fotoelétrico;			
15	Fótons: a natureza corpuscular da luz Elétrons e ondas de matéria; O postulado de de Broglie; A			
	dualidade onda-partícula			
16	Espectros atômicos e níveis de energia			
17	Momento magnético; O experimento de Stern-Gerlach;			
18	Efeito Zeeman; Tunelamento quântico;			
19	Efeito Compton			
20	2ª Avaliação			
21	Física Nuclear; Núcleos atômicos;			
22	Decaimento radioativo; dose de radiação Decaimento alfa, beta;			
23	Datação radioativa Aquecimento do núcleo da Terra Fissão do Urânio; Reatores nucleares Fusão			
	termonuclear;			
24	Geração de energia no Sol e estrelas Sólidos;			
25	Propriedades e estruturas dos sólidos Níveis de energia em um sólido cristalino ; Cristais;			
26	Espalhamento de raios- X Materiais isolantes;			
26	Metais condutores;			
27	Materiais semicondutores			
28	; Diodos; Diodo emissor de luz (LED); Lasers; O Transistor			
29	3ª Avaliação			
30	Avaliação Final			

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. HALLIDAY, David; RESNICK, Robert; WALKER, Jearl. Fundamentos de física. 9ª ed. Rio de Janeiro: LTC, 2012. v.4
- 2. HEWIT, Paul G. Física Conceitual. 11ª ed. Porto Alegre: Bookman, 2011.
- 3. SERWAY, Raymond A.; JEWETT, John W. Princípios de Física Vol. 4: Ótica e Física Moderna. São Paulo: Cengage Learning, 2012.
- 4. OLIVEIRA, Ivan S. Física moderna: para iniciados, interessados e aficionados. 2ª ed