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Abstract

Ceramics with tailored pore structure are showing potential applications in some

special fields. For fabricating quartz ceramics with orderlyearranged carbon filler,

a combination of 3D printing, vacuum suction filtration and sintering was

explored to fabricate quartz ceramics with highlyeordered and welleconnected

big pore channels. The spatial lattice structure in the polylactic acid (PLA)

template fabricated by 3D printing together with raw material ratio and

sintering temperature has great effect on the properties and pore structure of

the porous quartz ceramics. To demonstrate the technical feasibility for

fabricating quartz ceramics with orderlyearranged filler, carbon powder was

taken as an example and fully filled in the big pore channels of the porous

quartz ceramics via vacuum impregnation method. By choosing the quartz

ceramics with only highlyeordered and welleconnected big pore channels as

substrate, quartz ceramics with orderlyearranged carbon filler were successfully

obtained.

Keyword: Materials science
.e00935

vier Ltd. This is an open access article under the CC BY-NC-ND license

y-nc-nd/4.0/).

mailto:li_xiangming@yahoo.com
https://doi.org/10.1016/j.heliyon.2018.e00935
https://doi.org/10.1016/j.heliyon.2018.e00935
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2018.e00935&domain=pdf
https://doi.org/10.1016/j.heliyon.2018.e00935
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 Published

(http://creativecommons.org/li

Article Nowe00935
1. Introduction

Porous ceramics have attracted increasing attention and been widely used in

many fields, such as separation materials [1, 2], catalyst supports [3, 4], bone

substitute [5, 6], etc. Coldepressing followed by sintering is a common method

to fabricate porous ceramics with simple shape [7, 8, 9, 10]. Besides, some

advanced techniques such as gelcasting [11, 12, 13, 14], freeze casting [15, 16,

17, 18] and direct forming [19] have been newly explored for fabricating porous

ceramics. Basically, the porous ceramics fabricated by these methods have good

structural and functional properties due to their uniform microstructure and

welledistributed pores.

Recently, ceramics with tailored pore structure have been showing potential applica-

tions in some special fields. In the field of bone tissue engineering, bioscaffolds

should have a certain amount of welleconnected big pore channels with diameter

in the range of 200e500 mm for the transport of body fluids and cells such as oste-

oclasts and osteoblasts [20]. Besides, bioscaffolds should also contain

uniformedistributed small pores with diameter of 2e5 mm for facilitating the attach-

ment of cells and the excretion of metabolic waste [21, 22, 23]. In the field of elec-

tromagnetic absorption, orderly arranging carbon filler in materials with

lowepermittivity is an effective method to improve the electromagnetic absorbing

property of the carbonecontaining materials. For example, electromagnetic wave

could enter epoxy resin material with little reflection and then be attenuated by

the orderlyearranged carbon fibers in the epoxy resin material [24, 25]. Similarly,

if carbon filler is orderlyearranged in the ceramics with lowepermittivity, the

carbonecontaining ceramics could also possess good electromagnetic absorbing

property. Furthermore, these carbonecontaining ceramics could be used in harsh

environment for long time because of their excellent chemical and environmental

stability.

To obtain ceramics with orderlyearranged carbon filler, the ceramics with

highlyeordered and welleconnected big pore channels should be fabricated firstly.

This paper demonstrates an effective means to fabricate ceramics with tailored pore

structure and those with orderlyearranged carbon filler. Due to the low permittivity

of quartz, a combination of 3D printing, vacuum suction filtration and sintering is

explored to fabricate quartz ceramics with highlyeordered and welleconnected

big pore channels. The effect of raw material ratio and sintering temperature on

the shrinkage, open porosity, compression strength and microstructure of the porous

quartz ceramics is studied. Additionally, in order to show the technical feasibility of

introducing carbon filler in the quartz ceramics, the microstructure of quartz ce-

ramics with orderlyearranged carbon filler fabricated via vacuum impregnation pro-

cess is demonstrated.
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2. Experimental

Calcium carbonate powder (CaCO3) was mixed with talc powder

(Mg3[Si4O10](OH)2) at a weight ratio of 1:1. The obtained mixture was used as ad-

ditive and added in quartz powder containing 5 wt% of albite (NaAlSi3O8) and 5 wt

% of microcline (KAlSi3O8) at levels of 10, 20 and 30 wt% respectively. The new

obtained mixture was ballemilled in the planetary ball grinder for 2 h at a high speed

(rotation speed of 360 r/min, revolution speed of 400 r/min), and ballemilled again

for 10 min into slurry by adding ethanol. The weight content of ethanol in the slurry

was controlled at about 25 wt%.

The PLA template with spatial lattice structure is printed out by a 3D printer

(CRe10, Shenzhen Creality 3D Technology Co. Ltd, China). Fig. 1 shows one layer

sliced from the PLA template. As can be seen, the spatial lattice structure in the tem-

plate is formed by orderlyearranging circular columns in X, Y and Z directions. The

inner diameter and height of the template is 20 and 36 mm respectively. The diam-

eter of the columns is 0.6 mm, and the center distance between every two adjacent

columns is 2.0 mm.

Fig. 2 schematic shows the fabrication process of quartz ceramics with

orderlyearranged carbon filler. Firstly, assembled the template with filter paper

and base, vacuumized the air in the base by a vaccum pump and added slurry slowly

into the template. As the template was fully filled with powder blend, stop adding

slurry and continued vacuumizing for 2 h. During the vacuumizing process, the

ethanol in the slurry in the template was removed completely. Secondly, put the tem-

plate containing powder blend in a furnace and sintered it at 1150e1250 �C for 2 h in

air. During the sintering process, after removing the template because of oxidation,

quartz ceramics with highlyeordered and welleconnected big pore channels were
Fig. 1. One layer sliced from the PLA template with spatial lattice structure.
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Fig. 2. Schematic of the fabrication process of quartz ceramics with orderlyearranged carbon filler.
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obtained. Finally, dipped the porous quartz ceramics in slurry comprising carbon

powder (analytical pure, 1000 mesh), polyvinyl alcohol and distilled water at a

weight ratio of 75:1:24. When the big pores in the porous quartz ceramics were fully

filled with carbon powder via vacuum impregnation method, quartz ceramics with

orderlyearranged carbon filler were obtained by drying at 60 �C for 10 h.

The phase analyses were conducted by Xeray diffraction (XRD, XRDe7000, Shi-

madzu, Japan). Microstructure was observed by scanning electron microscopy

(SEM, JSMe7610F, JEOL, Japan). Before SEM observation, all samples were pol-

ished with 0.5 mm diamond paste as a final polishing step. Shrinkage was estimated

by measuring the center distance between the big pore channels of the porous quartz

ceramics. Open porosity was measured by Archimedes method. Five cylindrical

samples of 30 � 15 mm2 diameter were tested to obtain the average compression

strength via uniaxial compression test. Pore size distribution was measured using

a Mercury Porosimeter (Poremaster 33, Quantan, USA). To facilitate the following

discussion, the porous quartz ceramic fabricated from the powder blend with m wt%

of additive at temperature of n �C is denoted as PQemen (m is 10, 20 or 30, n is

1150, 1200 or 1250), and the corresponding quartz ceramic with carbon filler is

named as PQemeneC.
3. Results and discussion

Table 1 shows the properties of the porous quartz ceramics. Albite and microcline

could decrease effectively the melting temperature of quartz, so the quartz in the

powder blend is in molten state when sintering at 1150e1250 �C with the help of

albite and microcline [26, 27], and the increase of fluidity of molten quartz with tem-

perature rising will promote the shrinkage of the porous quartz ceramics. As shown

in Table 1, the volume shrinkage of PQe(10, 20 and 30) increases rapidly from

21.6%, 17.2% and 15.1%e34.1%, 29.0% and 32.3% respectively as the temperature

rises from 1150 to 1200 �C, and then increases slowly to 33.7%, 30.7% and 33.0%

respectively with temperature rising from 1200 to 1250 �C. The addition of talc has

restraining effect on the shrinkage of ceramics [28, 29, 30], so basically the volume
on.2018.e00935
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Table 1. Properties of the porous quartz ceramics.

Sample number Volume shrinkage (%) Open porosity (%) Compression strength (MPa)

SOe10 e1150 21.6 27.2 8.5
e1200 34.1 18.2 44.2
e1250 33.7 7.2 61.9

SOe20 e1150 17.2 34.8 6.4
e1200 29.0 23.3 39.4
e1250 30.7 9.9 46.6

SOe30 e1150 15.1 39.4 4.1
e1200 32.3 28.6 34.6
e1250 33.0 16.7 38.4
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shrinkage of the porous quartz ceramics decreases gradually with the increase of talc

in powder blend. As shown in Table 1, the volume shrinkage of PQe(1150, 1200

and 1250) decreases respectively from 21.6%, 34.1% and 33.7%e17.2%, 29.0%

and 30.7% as the additive in powder blend increases from 10 to 20 wt%. As the

talc in powder blend increases further, the more silica deriving from the decompo-

sition of talc will promote the shrinkage of porous quartz ceramics especially at

higher temperature. Therefore, as the additive in powder blend increases from 20

to 30 wt%, the volume shrinkage of PQe1150 decreases from 17.2% to 15.1%, while

the volume shrinkage of PQe(1200 and 1250) increases respectively from 29.0%

and 30.7%e32.3% and 33.0%.

Fig. 3 shows the XRD patterns of PQe(10, 20 and 30). As can be seen, PQe(10, 20

and 30) are composed of a primary phase of quartz and a secondary phase of diop-

side (CaMgSi2O6) and cristobalite no matter what the sintering temperature is. As

the additive in powder blend increases, the peak height of quartz decreases slowly

with the peak height of diopside increasing gradually. As the temperature rises

from 1150 to 1250 �C, the peaks of diopside become clearer and sharper, the

peak height of cristobalite increases, and the amount of amorphous silica increases

gradually. Diopside has much higher strength than quartz, so the increase of calcium

carbonate in powder blend is theoretically conducive to improving the strength of the

quartz ceramics. However, for porous ceramics, the increase of shrinkage will lead to

decrease in porosity, and the decrease of porosity generally gives rise to an increase

in compression strength. As shown in Table 1, as the temperature rises from 1150 to

1250 �C, PQe(10, 20 and 30) decrease respectively in open porosity from 27.2%,

34.8% and 39.4%e7.2%, 9.9% and 16.7% due to the increase of shrinkage. During

sintering, besides the restraining effect of talc on shrinkage, the decomposition of

more calcium carbonate will increase the porosity of quartz ceramics, so

PQe(1150, 1200 and 1250) increase respectively in open porosity from 27.2%,

18.2% and 7.2%e39.4%, 28.6% and 16.7% as the additive in powder blend increases

from 10 to 30 wt%. Due to the decrease of porosity with temperature rising from

1150 to 1250 �C, PQe(10, 20 and 30) increases rapidly in compression strength
on.2018.e00935
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Fig. 3. XRD patterns of (a) PQe10, (b) PQe20 and (c) PQe30.
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Fig. 4. SEM micrographs of PQe10e1200 ((a) low magnification and (c) high magnification) and

PQe30e1200 ((b) low magnification and (d) high magnification).
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from 8.5, 6.4 and 4.1 MPa to 61.9, 46.6 and 38.4 MPa respectively. Because of the

increase of porosity as the additive in powder blend increases from 10 to 30 wt%,

PQe(1150, 1200 and 1250) decrease gradually in compression strength from 8.5,

44.2 and 61.9 MPa to 4.1, 34.6 and 38.4 MPa respectively.

Based on the results in Table 1, PQe(10, 20 and 30)e1200 have sufficient compres-

sion strength and relatively high open porosity. Fig. 4 shows the SEMmicrographs of

PQe(10 and 30)e1200 after polishing. From the low magnification micrographs in

Fig. 4(aeb), themicrostructures of PQe(10 and 30)e1200 are uniformwithout defect,

the big pore channels faithfully replicating the spatial lattice structure in the template

(Fig. 1) are orderly distributed, the wall of big pore channels is smooth with hardly any

defect and sharp angle. From the micrographs (Fig. 4(ced)) taken from the matrix

among the big pore channels, the microstructures of PQe(10 and 30)e1200 are

much different with each other. The sporadically distributed small pores in

PQe10e1200 are independent of each other, while a large number of small pores

in PQe30e1200 are uniformlyedistributed and welleconnected with each other.

Fig. 5 shows the volume percentage of the pores in PQe(10 and 30)e1200. Calcu-

lating according to the volume percentage of the slender columns in the template, the

volume percentage of the big pore channels in the porous quartz ceramics should be

about 17.7%. This value is close to the open porosity (18.2%) of PQe10e1200. As

known from the pore size distribution of PQe10e1200 measured by mercury poros-

imeter, the volume percentage of the small pores with mean diameter of about 10 mm

is only 0.6 %, the volume percentage of the big pores with mean diameter of about

500 mm is 17.9% which is even closer to the open porosity of PQe10e1200. Ac-

cording to the above results, it can be concluded with enough reason that almost

all of the small pores in PQe10e1200 are closed and independent of each other,

and the highlyeordered big pore channels in PQe10e1200 are welleconnected

with each other.
Fig. 5. Volume percentage of the pores in PQe(10 and 30)e1200.
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Fig. 6. SEM micrographs of (a) the carbon powder used in this work and the samples of (b)

PQe10e1200eC and (c) PQe30e1200eC.
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For PQe30e1200, the open porosity (28.6%) is much higher than the calculated vol-

ume percentage of the big pore channels. From the pore size distribution measured by

mercury porosimeter, the volume percentage of the small pores with mean diameter

of about 30 mm is 13.3 %, and the volume percentage of the big pores with mean

diameter of about 400 mm is 15.6 %. Accordingly, it can be concluded from the above

results that both the large number of uniformlyedistributed small pores and the

highlyeordered big pore channels are welleconnected with each other.

Fig. 6 shows the SEM micrographs of the carbon powder used in this work and the

samples of PQe(10 and 30)e1200eC after polishing. As shown in Fig. 6(a), the

carbon grains are sphere/ellipsoideshaped with hardly any sharp angle at surface,

the diameter of the carbon grains is about 10 mm. The sphere/ellipsoideshaped car-

bon grains are benefit to reducing the flow resistance of carbon powder in the big

pore channels of PQe(10 and 30)e1200eC during the impregnation process, so

the big pore channels in PQe(10 and 30)e1200eC (Fig. 6(bec)) are fully filled

with carbon powder. During the impregnation process, the carbon powder in slurry

cannot enter the small pores of PQe10e1200 because the sporadically distributed

small pores in PQe10e1200 are completely independent of each other. As shown

in Fig. 6(b), there is not any carbon filler in the small pores of PQe10e1200eC,

and the cross section shape of the carbon filler in the big pore channels is perfectly

round.

For PQe30e1200, the small pores and big pore channels are welleconnected with

each other, so, after the big pore channels in PQe30e1200 have been fully filled

with slurry during the impregnation process, the carbon powder in slurry may

have an opportunity to enter the small pores by passing through the wall of big

pore channels. As can be seen from the micrograph of PQe30e1200eC in

Fig. 6(c), besides the big pore channels, some small pores especially those nearby

the big pore channels are also filled with carbon powder. Due to the irregular filling

of carbon powder in the small pores nearby the big pore channels, the cross section

shape of the carbon filler in PQe30e1200eC is not round but irregular.
4. Conclusions

In this study, quartz ceramics with highlyeordered and welleconnected big pore

channels were fabricated by a combination of 3D printing, vacuum suction filtration

and sintering. The spatial lattice structure in the template together with raw material

ratio and sintering temperature has great effect on the properties and pore structure of

the porous quartz ceramics.

By using the PLA template printed out in this work, the porous quartz ceramics fabri-

cated from the quartz powder with 5 wt% calcium carbonate and 5 wt% talc by sin-

tering at 1200 �C for 2 h show sporadically distributed small pores which are
on.2018.e00935
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completely independent of each other, highlyeordered and welleconnected big pore

channels with diameter of about 500 mm and volume percentage of about 17.9%,

open porosity of 18.2% and compression strength of 44.2 MPa.

Take the quartz ceramics with only highlyeordered and welleconnected big pore

channels as substrate, orderlyearranged carbon filler was successfully formed in

the porous quartz ceramics by fully filling carbon powder in the big pore channels

of the porous quartz ceramics via vacuum impregnation method. In the field of elec-

tromagnetic absorption, the structure of the carbon filler in quartz ceramics could

easy be adjusted by changing the spatial lattice structure in the template according

to the demand for electromagnetic absorbing property.
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