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Abstract. The study of heat flow problems is of extreme importance in engineering, there is a 

need to know the temperatures imposed and generated, when appropriate, in the structural parts 

to be able to evaluate the stresses that can arise due to the thermal variations. These stresses 

arise due to imposed constraints, ie bodies can not move freely and consequently undesirable 

cracks may arise when the stresses are greater than the resistive capacity of the stressed parts. 

The analysis of these problems can be done in both analytical or numerical way, with the use 

of calculation methods, such as the Finite Difference Method (FDM) and the Finite Element 

Method (FEM), with aid of computational programs such as MATLAB, PYTHON and 

ANSYS, as used in this work. The results presented here show simple cases of transient thermal 

variation and thermomechanical coupling by two methods of analysis, aiming at the validation 

of the numerical methods and softwares used. The solutions were satisfactory, the temperatures 

and stresses were coincident for different methods, making possible to start studying more 

complex problems with confidence in the implemented code. 
 

 

1 INTRODUCTION 

Heat flow is a common phenomenon in engineering. The temperature variation may be 

responsible for problems in structural parts due to the appearance of thermal stresses that may 

exceed the design resistive capacity and, consequently, give rise to fissures.  

The study of heat equations is necessary so that it is possible to analyze the behavior of the 

involved materials in any project. The imposed conditions, initial and boundary conditions have 

direct influence on the equation results. 

 One of the main objectives of heat conduction analysis is to know the temperature 
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distribution, ie, how the temperature varies with the position in the domain. Conductive heat 

flow at any point in the middle or surface of a body can be determined by the Fourier law, 

represented by Partial Differential Equations (PDEs) [1].  

Among the various mechanisms for solving heat transfer problems, there are the Finite 

Differences Method (FDM), easy to interpret and manipulate, the Finite Element Method 

(FEM), widely used in engineering, as well as the Analytical Methods, responsible for 

Mathematical solutions.  

The MDF is a numerical procedure that solves PDEs by discretizing a continuous physical 

domain into a finite discrete mesh, approaching each partial derivative in the EDP by 

approximations of finite algebraic differences [2]. The finite difference equation must represent 

the exact solution of the PDE at each point of the discretized region in which the problem 

solution is to be obtained [3].  

The FEM provides a general and systematic technique for the construction of base functions, 

which are necessary to model solutions of approximate boundary problems using, for example, 

the Galerkin method. According to [4], it is possible to construct approximate solutions for 

differential equations provided with a boundary condition, by dividing the domain of the 

solution into a finite number of subdomains.  

Thermomechanical coupling is an alternative to problem solving using the methods 

mentioned. First, results of thermal analyzes are obtained. With the thermal distribution 

associated with the mechanical boundary conditions found, it is possible to find the stresses 

arising from the heat flux.  

Therefore, this work intends to present analysis of heat flow and thermomechanical stresses 

for simple problems with the objective of accomplishing a preliminary and necessary step for 

studying the coupled problem in question. Thus, in this work will be presented comparisons 

between the Finite Element and the Finite Differences Methods for numerical solutions of the 

General Two-dimensional Heat Conduction Equation in Transient Regime and the coupled case 

of a plate submitted to a thermal variation. 

2 THEORETICAL FUNDAMENTS 

Analytical solutions to thermal problems, depending on the geometry and imposed initial 

and boundary conditions can be very complex or even impossible to determine. Numerical 

methods allow an easier and faster solution to these problems with the aid of computational 

tools. Therefore, in this work, the analytical methods, the FDM and the FEM were used, as will 

be presented in the sequence. 

2.1 General Heat Conduction Equation 

Heat conduction can be quantified in terms of differential equations. The mathematical 

model that describes the general heat conduction equation in rectangular coordinates, defined 

by [1, 2, 3, 4], is given by: 

𝑘 (
𝜕²𝑇

𝜕𝑥²
+

𝜕²𝑇

𝜕𝑦²
+

𝜕²𝑇

𝜕𝑧²
) + 𝑞̇ =  𝜌𝑐

𝜕𝑇

𝜕𝑡
 (1) 

In which q̇ is the heat generation in respect to time (W/m³), k is the termal conductivity 
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(W/mºC), c is the specific heat (J/gºC), ρ is specific mass (Kg/m³), 
∂T

∂t
 is the temperature 

variation in time, and (
∂²T

∂x²
+

∂²T

∂y²
+

∂²T

∂z²
) = ∇²T represents the termal gradient. 

2.2 General Heat Conduction Equation by Finite Differences Method (FDM): 

The FDM allows the temperature calculation at any point in the domain (Figure 1) from its 

boundary conditions. 

The method consists in the substitution of differential equations by algebraic equations, 

making derivative transformations into finite differences. Based on studies carried out by [8,5] 

the substitutions of First Order Differential Equations and Second Order Differential Equations 

are shown in table (1) by their respective Finite Differences forms: 

Table 1: First and Second order derivatives expressions aproximated through the FDM. 

1ª Order of Derivatives: 2ª Order of Derivatives 
∂T

∂x
 

Ti+1 − Ti−1

xi+1 − xi−1

=  
Ti+1 − Ti−1

2∆x
 

∂²T

∂x²
 

Ti+1,j,l − 2Ti,j,l + Ti−1,j,l

(xi+1 − xi−1)²
=  

Ti+1,j,l − 2Ti,j,l + Ti−1,j,l

∆x²
 

∂T

∂y
 

Tj+1 − Tj−1

yj+1 − yj−1

=  
Tj+1 − Tj−1

2∆y
 

∂²T

∂y²
 

Ti,j+1,l − 2Ti,j,l + Ti,j−1,l

(yj+1 − yj−1)²
=  

Ti,j+1,l − 2Ti,j,l + Ti,j−1,l

∆y²
 

∂T

∂z
 

Tl+1 − Tl−1

zl+1 − zl−1

=
Tl+1 − Tl−1

2∆z
 

∂²T

∂z²
 

Ti,j,l+1 − 2Ti,j,l + Ti,j,l−1

(zl+1 − zl−1)²
=  

Ti,j,l+1 − 2Ti,j,l + Ti,j,l−1

∆z²
 

 In the transient case there will be at least one time derivative. According to [5], the term 
∂T

∂t
, 

with time increments (), is defined as: 

∂T

∂t
=

𝑇𝑖
𝑘+1 − 𝑇𝑖

𝑘

∆𝑡
 (2) 

By replacing the ODEs with the corresponding differences in Eq. (1), we define the general 

heat conduction equation in three-dimensional finite differences: 

Beign 𝐷 =
𝑘

𝜌𝑐
, known as termal diffusivity.  

𝑇𝑘
𝑖+1,𝑗,𝑙 − 2𝑇𝑘

𝑖 + 𝑇𝑘
𝑖−1, 𝑗, 𝑙

∆𝑥²
+

𝑇𝑘
𝑖,𝑗+1,𝑙 − 2𝑇𝑘

𝑖 + 𝑇𝑘
𝑖,𝑗−1,𝑙

∆𝑦²
+

𝑇𝑘
𝑖,𝑗,𝑙+1 − 2𝑇𝑘

𝑖 + 𝑇𝑘
𝑖,𝑗,𝑙−1

∆𝑧²
+ 

𝑞𝑘

𝑘

=
1

𝐷

𝑇𝑖
𝑘+1 − 𝑇𝑖

𝑘

∆𝑡
 

(3) 

Figura 1: Finite Diferences Mesh Example. 

(Coelho,2016) 
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Considering ∆𝑥² = ∆𝑦² = ∆𝑧², and simplifying Eq. (3), arise the Eq. (4): 

𝑇𝑖
𝑘+1 = 𝐹(𝑇𝑘

𝑖+1,𝑗,𝑙 + 𝑇𝑘
𝑖−1, 𝑗, 𝑙 + 𝑇𝑘

𝑖,𝑗+1,𝑙 + 𝑇𝑘
𝑖,𝑗−1,𝑙 + 𝑇𝑘

𝑖,𝑗,𝑙+1 + 𝑇𝑘
𝑖,𝑗,𝑙−1) + (1 − 6𝐹)𝑇𝑖

𝑘

+  𝐺 
(4) 

In which, 

𝐹 =
∆𝑡. 𝐷

∆𝑥2
 (5) 

𝐺 =
𝑞𝑘. ∆𝑥2. ∆𝑡

𝜌𝑐
 (6) 

 The expression in FDM allows the calculation of temperature at any point in the domain. 

The virtual points outside the domain are determined by the boundary conditions. The 

application of the FDM expression to all points of the domain leads to a system of n equations 

with n unknowns, of type Ax = B, which is solved by the classical mathematical methods in 

MatLab. [5]. 

2.3 General Heat Conduction Equation by Finite Elements Method (FEM): 

 According to [5], the temperature distribution T (x, y, z, t) inside the solid body is defined 

as: 

Using Galerkin’s Method as solution to Eq. (7), the following steps were adopted, [19]: 

1. Divide the domain V into E finite elements with p nodes; 

2. Assume the appropriate variational form of T in finite elements with 𝑒 elements, 

expressed by: 

𝑇(𝑒)(𝑥, 𝑦, 𝑧, 𝑡) = [𝑁(𝑥, 𝑦, 𝑧)]𝑇⃑ (𝑒) (8) 

Where, 

[N(x, y, z)] =  [N1(x, y, z)          N2(x, y, z)   …  Np(x, y, z)  ] (9) 

T⃑⃑ (e) = [
T1(t)

⋮
T2(t)

] (10) 

3. The integral of the weighted residue on the element domain is set equal to zero, having 

the same weights as the interpolation functions Ni. If the solution of the previous 

equation is not exact, it is replaced by the differential equation, which instead of zero 

will have a different value called the residual. Thus, the criterion to be satisfied at each 

instant of time is: 

I = ∭ ⌊Ni (k(
∂

∂x
(
∂T(e)

∂x
) +

∂

∂y
(
∂T(e)

∂y
) +

∂

∂z
(
∂T(e)

∂z
))) + q̇ − ρc

∂T(e)

∂t
⌋

Ve
dV (11) 

𝐼 =
1

2
∭ ⌊𝐾 ((

∂T

∂x
)
2

+ (
∂T

∂y
)
2

+ (
∂T

∂z
)
2

) − 2 (𝑞̇ − ρc
∂T

∂t
) 𝑇⌋

𝑉

𝑑𝑉 
 

(7) 
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Rewritng the first termo of the integral: 

∭ Nik
∂

∂x
(
∂T(e)

∂x
)dV = −∭ k

∂Ni

∂xVe
(
∂T(e)

∂x
) dV + ∭ Nik

Ve
(
∂T(e)

∂x
) lxdS

Ve
 (12) 

Being 𝑙𝑥 the cosine in x-direction. For the complete equation: 

−∭ k [
∂Ni

∂x
(
∂T(e)

∂x
) +

∂Ni

∂y
(
∂T(e)

∂y
) +

∂Ni

∂z
(
∂T(e)

∂z
)]

Ve dV + ∭ NikVe [(
∂T(e)

∂x
) lx + (

∂T(e)

∂y
) ly +

(
∂T(e)

∂z
) lz ] dS + ∭ NikVe (q̇ − ρc

∂T(e)

∂t
) dV   

(13) 

 

The boundary of element (𝑒)  is composed of 𝑆1(𝑒), 𝑆2(𝑒) and 𝑆3(𝑒). The surface integral equals 

to zero due to 𝑇0 in 𝑆1(𝑒), the derivatives of  𝑇(𝑒) in respect to x, y and z are zero too. In 𝑆2(𝑒) 

and 𝑆3(𝑒), the boundary conditions satisfies the problem, thus having as surface integral in 𝑆2(𝑒) 

and 𝑆3(𝑒) : 

∬ Nik [(
∂T(e)

∂x
) lx + (

∂T(e)

∂y
) ly + (

∂T(e)

∂z
) lz ] dS

S2
(e)+S3

(e)

= ∬ Niq
S2

(e)
dS2 − ∬ h(T(e) − T∞)

S2
(e)

dS3        

(14) 

The matricial form of the equation is: 

[K1
(e)]T⃑⃑ (e) + [K2

(e)]T⃑⃑ (e) + [K3
(e)]T⃑⃑ (e)̇ − P⃑⃑ (e) = 0⃑  (15) 

In which: 

𝑲𝟏𝒊𝒋
(𝒆) = −∭ 𝑘 [

∂𝑁𝑖

∂x
(
∂T𝑁𝑗

∂x
) +

∂𝑁𝑖

∂y
(
∂T𝑁𝑗

∂y
) +

∂𝑁𝑖

∂z
(
∂T𝑁𝑗

∂z
)] 𝑑𝑉

𝑉𝑒
 (16) 

𝑲𝟐𝒊𝒋
(𝒆) = ∬ ℎ𝑁𝑖𝑁𝑗

𝑆3
(𝑒)

𝑑𝑆3 (17) 

𝑲𝟑𝒊𝒋
(𝒆) = ∬ 𝜌𝑐𝑁𝑖𝑁𝑗

𝑉(𝑒)
𝑑𝑉 (18) 

𝑃⃑ (𝑒)
𝑖 = ∬ 𝑞̇𝑁𝑖

𝑉(𝑒)
𝑑𝑉 − ∬ 𝑁𝑖𝑞

𝑆2
(𝑒)

𝑑𝑆2 − ∬ ℎ(𝑇∞)
𝑆2

(𝑒)
𝑑𝑆3 (19) 

4. The matrix elements can be written in the usual form: 

[𝐾3]𝑇⃑ 
(𝑒) +̇ [𝐾(𝑒)]𝑇⃑ (𝑒) = 𝑃⃑  (20) 

[𝑲𝟑] = ∑[𝑲𝟑
(𝒆)]

𝑬

𝒆=𝟏

 (21) 

[𝑲] = ∑[𝑲𝟏
(𝒆) + 𝑲𝟐

(𝒆)]

𝑬

𝒆=𝟏

 (22) 
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𝑃⃑ = ∑[𝑷⃑⃑ (𝒆)]

𝑬

𝒆=𝟏

 (23) 

5. The equations must be solved by incorporating the boundary conditions and the initial 

conditions. The expressions [𝑲𝟏
(𝒆)],[𝑲𝟐

(𝒆)],[𝑲𝟑
(𝒆)] and 𝑷⃑⃑ (𝒆) are written as matrixes with 

notation: 

𝑲𝟏
(𝒆) = ∭ [𝐵]𝑇⌈𝐷⌉[𝐵]𝑑𝑉

𝑉𝑒
 (24) 

𝑲𝟐
(𝒆) = ∭ ℎ[𝑁]𝑇⌈𝑁⌉𝑑𝑆3

𝑆3
𝑒

 (25) 

𝑲𝟑
(𝒆) = ∭ 𝜌𝑐[𝑁]𝑇⌈𝑁⌉𝑑𝑉

𝑉𝑒
 (26) 

𝑃⃑ (𝑒) = 𝑃⃑ 1
(𝑒)

− 𝑃⃑ 2
(𝑒)

+ 𝑃⃑ 3
(𝑒)

 (27) 

Where: 

𝑷𝟏
⃑⃑ ⃑⃑  

(𝒆)
= ∭ 𝑞̇[𝑁]𝑇𝑑𝑉

𝑉𝑒
 (28) 

𝑷𝟐
⃑⃑ ⃑⃑  

(𝒆)
= ∬ 𝑞[𝑁]𝑇

𝑆3
(𝑒)

𝑑𝑆2 (29) 

𝑷𝟑
⃑⃑ ⃑⃑  

(𝒆)
= ∬ ℎ𝑇∞[𝑁]𝑇

𝑆3
(𝑒)

𝑑𝑆3 

 

(30) 

[𝐷] = [

𝑘𝑥 0 0
0 𝑘𝑦 0

0 0 𝑘𝑧

] (31) 

  

[𝐵] =

[
 
 
 
 
 
 
𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑥
…

𝜕𝑁𝑝

𝜕𝑥
𝜕𝑁1

𝜕𝑦

𝜕𝑁2

𝜕𝑦
…

𝜕𝑁𝑝

𝜕𝑦

𝜕𝑁1

𝜕𝑧

𝜕𝑁2

𝜕𝑧
…

𝜕𝑁𝑝

𝜕𝑧 ]
 
 
 
 
 
 

 (32) 
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3 RESULTS 

The presented results were developed by FDM and FEM in the first problem, with 

implementation in MATLAB and PHYTON, respectively, showing the transient heat flux for 

a situation with heat generation. In the second problem, results are displayed for a 

thermomechanical coupling using the analytical solution compared to the FEM using the 

ANSYS WORKBENCH software. 

3.1 Complete 2D Heat Equation with Internal Heat Generation 

The proposed case consists of a concrete plate of unit dimensions, with internal heat 

generation. The points analyzed were P1, P2 and P3, which are located in the center line of the 

x-axis, 0.25 m from the upper surface, at the plate central point and 0.25 from the lower surface 

of the y-axis, respectively. The adopted heat generation is represented by 𝑞 ̇ = 𝑞0.𝑚.e(−𝑚𝑡), where 

q0= 200 J/m³s. 

 

 

 

 

 

 

 

 

 

The considered thermal and mechanical properties are in Tab. (2): 

Table 2: Thermal and mechanical properties 

Property SI Valor 

Thermal Conductivity k 1,79 (W/m.ºC) 

Specific Heat c 1000(J/g.ºC) 

Specific Mass ρ 2388(Kg/m³) 

Thermal Expansion Coefficient α 16,67.10-6 (/ ºC) 

Elasticity Module E 210000MPa 

Conductive Heat Transfer 

Coefficient 
h 13,95 W/mK 

3.1.1 Analysis of Results 

The comparison between results was performed by comparing the temperature evolution 

curves obtained by the numerical solutions of the FDM and FEM at the stipulated time of 17280 

s, as a function of the positions shown in Figs (3,4). The first graph, Fig. (03), considered the 

position variation only around the x-axis by adopting the central position of the plate (0.50 m) 

Figure 2: Plate and points analyzed by equaction. 
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at y. In the abscissa axis the position variations in x (m) were considered and in the ordinates 

the temperature variation (ºC). 

 

Analyzing Fig. (3) it can be seen that in the position x = 0.00 m the temperature corresponds 

to 100 °C, and for position x = 1.00 m to 10 ° C, which are the initial boundary conditions. In 

other positions, the results overlap, showing that the results obtained are reliable. The graph in 

Fig. (4) considered the position variation only around the y-axis and adopted the central position 

(0.50 m) for x. In the abscissa axis are the position variations in y (m) and in the ordinates the 

temperature variation (ºC). 

 

 

 

 

 

 

 

 

 

 

 

 

As in the graph of Fig. (3), in Fig. (4), the temperatures dependent on the boundary 

conditions remained the same, at 50 °C and 0 °C, and the other points presented overlapping 

results. 

Afterwards, the temperature evolution was analyzed as a function of time by the two 

numerical methods at three points on the plate (P1, P2 and P3). The point P1 is located at the 

coordinates x = 0.50m and y = 0.25m. P2 at coordinates x = 0.50m and y = 0.50m and point P3 

at coordinates x = 0.50m and y = 0.75m. The comparisons can be seen in Figs. (5a), (5b) and 

Figure 3: Temperature along the X-axis for the complete 2D 

equation 

Figure 4: Temperature along the Y-axis for the complete 2D 

equation 
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(5c). 

 

In all the graphs of Fig. (5), it can be observed that the results obtained by FDM and FEM 

are coincident, showing a good treatment of data and that both are efficient in the solution of 

heat problems. 

3.2 Thermomechanical Coupling in a Retangular Plate 

In this section, numerical-analytical results will be compared for the case of rectangular plate 

with fixed boundary conditions subject to a non-uniform heat variation T, according to Fig. 

(6), as proposed by [20]. 

 

 

 

 

 

 

 

 

 

Figure 5.a: Transient temperatura analysis in point 

P1 

P2 

Figure 5.b: Transient temperatura analysis in point 

P2 

P3 

Figure 5.c: Transient temperatura analysis in point 

P3 

Figure 6: Mechanical results comparison for a bi-crimped beam. 
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     Considering the edges of the plate free to slide, but with restriction to rotation, case A, the 

moment in the plate is given by Eq. (33). 

M = −
Dα(ΔT)

h
(1 + ν)  (33) 

Being M the moment due to the temperature gradient (𝚫𝑻), 𝑫 =
𝑬𝒉𝟑

𝟏𝟐(𝟏−𝝂𝟐)
 is the flexural 

stiffness and 𝛎 is the Poisson’s coefficient. 

The correspondent maximum stress 𝜎𝑚𝑎𝑥,𝑏 is given by: 

𝜎𝑚𝑎𝑥,𝑏 = ±
6𝑀

ℎ2    (34) 

Was modeled in ANSYS Workbench a solid body of dimensions (x, y, z) = (0.5, 0.5, 0.1), 

as in Fig. (XX), with temperatures T = 0 °C at z = 0.0 m and T = 100 °C at z = 0.1 m. The 

results for the temperatures can be visualized in Fig. (XX), presenting a uniform thermal 

distribution. 

If there is only the displacement restriction at z, the maximum and minimum stresses found 

at the central points of the body are  9.4303E7 Pa. Using Eqs. (33) and (34), the maximum 

stresses are 8.57E7 Pa, differing only in 9.0 % from the software result. The graph of Fig. (08) 

presents the stress distribution in the abscissa axis (Pa), by the thickness in the ordinates axis 

(m). The 'calculated stress’ curve represents the maximum tensions found analytically, ‘Stress 

X' represents the stresses found by the program along the width and ‘Stress Z' the stresses in 

the thickness direction, being free to rotate, the stresses in that axis are zero. However, the 

maximum stresses by both methods are very close.  

Figura 07: Resultados mecânicos para a viga biengastada 

Figure 08: Thermal stresses result comparison for different cases 
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With this analysis, it can be affirmed that the analytical method and the MEF, applied 

through the ANSYS, can be used in the resolution of thermomechanical problems in 

engineering, and can later apply this methodology to more complex situations. Other similar 

analyzes can be observed in [9]. 

4 CONCLUSIONS 

With the presented results, it is possible to affirm that the thermal and thermomechanical 

analyzes can be done by means of different methods, like the analytical method, FDM and 

FEM. The comparisons between the simulations performed with the exposed alternatives were 

coincident, showing a good treatment of the data and a correct manipulation of the 

computational tools. It is also noted that the initial conditions and boundary properly applied 

are essential in order to reach the expected results. Although the cases presented are simple, 

they are essential if advances are to be achieved, as they are part of a needed preliminary study 

phase of validation that aims to arrive at solutions, with confidence in numerical simulations, 

of more complex problems. 
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